116 research outputs found

    NMR studies of membrane structure and dynamics

    Get PDF
    Over the past decade, there has been considerable interest in the motional state of the phospholipid bilayer membrane. The motivation underlying these efforts has been the contention that the phospholipid bilayer is the basic matrix in which membrane proteins are embedded to form the biological membrane, and that the permeability and mechanical properties of the membrane, as well as the enzymatic activity of membrane proteins, are dependent upon the fluidity of the bilayer, especially the motional state of the hydrocarbon chains

    Structure of cytochrome a3-Cua3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies

    Get PDF
    The addition of NO to oxidized cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) causes the appearance of a high-spin heme electron paramagnetic resonance (EPR) signal due to cytochrome a3. This suggests that NO coordinates to Cu{a3}+2 and breaks the antiferromagnetic couple by forming a cytochrome a3+3-Cu{a3}+2-NO complex. The intensity of the high-spin cytochrome a3 signal depends on the method of preparation of the enzyme and maximally accounts for 58% of one heme. The effect of N3- on the cytochrome a3+3-Cu{a3}+2-NO complex is to reduce cytochrome a3 to the ferrous state, and this is followed by formation of a new complex that exhibits EPR signals characteristic of a triplet species. On the basis of optical and EPR results, a NO bridge between cytochrome a3+2 and Cu{a3}+2 is proposed-i.e., cytochrome a3+2-NO-Cu{a3}+2. The half-field transition observed at g = 4.34 in the EPR spectrum of this triplet species exhibits resolved copper hyperfine splittings with |A{}| = 0.020 cm-1, indicating that the Cu{a3}+2 in the cytochrome a3+2-NO-Cu{a3}+2 complex is similar to a type 2 copper site

    Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment

    Get PDF
    AbstractModelling pedestrian loading on lively structures such as bridges remains a challenge. This is because pedestrians have the capacity to interact with vibrating structures which can lead to amplification of the structural response. Current design guidelines are often inaccurate and limiting as they do not sufficiently acknowledge this effect. This originates in scarcity of data on pedestrian behaviour on vibrating ground and uncertainty as to the accuracy of results from previous experimental campaigns aiming to quantify pedestrian behaviour in this case. To this end, this paper presents a novel experimental setup developed to evaluate pedestrian actions on laterally oscillating ground in the laboratory environment while avoiding the implications of artificiality and allowing for unconstrained gait. A biologically-inspired approach was adopted in its development, relying on appreciation of operational complexities of biological systems, in particular their adaptability and control requirements. In determination of pedestrian forces to the structure consideration was given to signal processing issues which have been neglected in past studies. The results from tests conducted on the setup are related to results from previous experimental investigations and outputs of the inverted pendulum pedestrian model for walking on laterally oscillating ground, which is capable of generating self-excited forces

    A Theoretical Investigation of the One– and Two–photon Properties of Porphyrins

    Get PDF
    The one‐ and two‐photon properties of free base porphin, free base porphin dianion, and the 2,4‐substituted diformyl and divinyl analogs of these molecules are studied using a semiempirical SCF‐MO formalism (CNDO‐π‐SCF‐MO‐PSDCI) including extensive single and double configuration interaction. Strongly two‐photon allowed states are predicted to lie in the Soret region as well as in the region between the Soret and visible bands. A number of the two‐photon allowed states in the Soret region are predicted to have two‐photon absorptivities exceeding 100×10−50 cm4 s molecule−1 photon−1. The calculations indicate that the visible (Q) states are well characterized by the four orbital model, whereas the Soret (B) states contain significant contributions from configurations comprised of other orbitals. The inclusion of extensive double configuration interaction significantly reduces the Soret‐visible (B–Q) splitting, increases the Qx–Qy splitting, and yields calculated oscillator strengths for the Qbands in better agreement with experiment than values calculated using single CI alone. The effects of conjugation into the porphyrin macrocycle are predicted to be more significant than inductive effects on macrocycle π orbitals due to substituent polarity. The 〈Qx‖r‖S0〉 and 〈Qy‖r‖S0〉 transition moment vectors are predicted to lie approximately through adjacent pyrrole rings in 2‐ and 4‐monoformyl free base porphin dianions and approximately through adjacent methine bridges in 2,4‐diformyl free base porphin dianion

    100th anniversary of the discovery of the human adrenal fetal zone by Stella Starkel and LesƂaw Węgrzynowski: how far have we come?

    Full text link

    New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides

    Get PDF
    Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, ‘‘blue’’ form with an S2 (11 Bu ?) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, ‘‘red’’ form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (11 Bu ?) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (11 Bu ?) ? Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (11 Bu ?) ? S0 (11 Ag -) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid–protein interactions, including the inferred hydrogen bondin
    • 

    corecore